ПAmIBIA UПIVERSITY
OF SCIEПCE AПD TECHחOLOGY
FACULTY OF HEALTH, APPLIED SCIENCES, AND NATURAL RESOURCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

QUALIFICATION: Bachelor of Science Honours in Applied Statistics	
QUALIFICATION CODE: O8BSHS	LEVEL: 8
COURSE CODE: ASS 801S	COURSE NAME: APPLIED SPATIAL STATISTICS
SESSION: JUNE 2022	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER	Dr D. NTIRAMPEBA
MODERATOR:	

INSTRUCTIONS

1. Answer ALL the questions in the booklet provided.
2. Show clearly all the steps used in the calculations.
3. All written work must be done in blue or black ink and sketches must be done in pencil.

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.

ATTACHMENTS

1. Chi-square table

THIS QUESTION PAPER CONSISTS OF 5 PAGES (Excluding this front page \& Chi-square table)
1.1 Briefly explain the following terminologies as they are applied to Spatial Statistics.
(a) Feature
(b) Support
(c) Attributes
(d) Areal data
1.2 Let X_{1}, \ldots, X_{n} be random variables in ℓ^{2}. The symmetric covariance matrix of the random vector $\mathrm{X}=\left(X_{1}, \ldots, X_{n}\right)^{T}$ is defined by $\Sigma:=\operatorname{Cov}(\mathbf{X})=E\left[(\mathbf{X}-E(\mathbf{X}))(\mathbf{X}-E(\mathbf{X}))^{T}\right]$. Note that $\Sigma_{i, j}=\operatorname{Cov}\left(X_{i}, X_{j}\right)$
(a) Show that Σ is positive semi-definite.
(b) Define what it means for Σ to be a non-degenerate covariance matrix?

Question 2 [30 marks]

2.1 Consider a vector of areal unit data $Z=\left(Z_{1}, \ldots, Z_{n}\right)$ relating to n non-overlapping areal units. Additionally, consider a binary $n \times n$ neighbourhood matrix W, where $w_{k j}=1$ if areas (k, j) share a common border and $w_{k j}=0$ otherwise.
(a) Define mathematically the global Moran's I statistic, and explain which values correspond to spatial auto-correlation and which values correspond to independence.
(b) Now consider the following model relating to spatial random effects associated with the areal units, $\omega_{k} \left\lvert\, \omega_{-k} \sim N\left(\frac{\sum_{j=1}^{n} w_{k j} \omega_{j}}{\sum_{j=1}^{j} w_{k j}}, \frac{\sigma^{2}}{\sum_{j=1}^{n} w_{k j}}\right)\right.$, where in the usual notation ω_{-k} denotes all the spatial effects except the kth.
What type of model is this and give two limitations of it?
(c) Now suppose that one of the areal units is an island, and hence does not share a common border with any of the other areas. Given the definition of the neigh-bourhood matrix W above, is the model described in the previous part a valid model? Justify your answer. If it is not a valid model, how could W be altered to make it a valid model?
2.2 The Poisson models were fitted to a dataset on measles disease counts in the $n=34$ health districts that make up Namibia. The results of the analysis are shown below.

Moran I statistic standard deviate $=1.7036, \mathrm{p}$-value $=0.04423$
alternative hypothesis: greater
sample estimates:
$\begin{array}{rrr}\text { Moran I statistic } & \text { Expectation } & \text { Variance } \\ 0.18731789 & -0.03030303 & 0.01631812\end{array}$

Model 1: Non-spatial Possion regression model
Estimates of fixed effects parameters

	mean	sd	$0.025 q u a n t$	$0.975 q u a n t$
(Intercept)	0.161	0.052	0.059	0.264
Health facility	-0.03	0.003	-0.043	-0.01
Prop.Ed.mothers	-0.229	0.053	-0.334	-0.125
Prop vacc	-0.241	0.082	-0.48	-0.0102

Model 2: Spatial Possion regression model (ICAR)
Estimates of Fixed effects parameters

	mean	sd	$0.025 q u a n t$	$0.975 q u a n t$
(Intercept)	0.252	0.419	0.574	1.079
Health facility	-0.022	0.026	-0.074	-0.003
Prop.Ed.mothers	-0.548	0.424	-1.387	-0.288
Prop vacc	-0.061	0.666	-1.377	-0.003
	Estimates of model hyperparameters			
	mean	sd	$0.025 q u a n t$	$0.975 q$ quant
Precision(spatial)	1.36	0.349	0.77	2.13

Model 3: Spatial Possion regression model(Exchangeable)
Estimates of fixed effects parameters

	mean	sd	$0.025 q$ quant	$0.975 q u a n t$
(Intercept)	0.735	0.51	0.271	1.278
Health facility	-0.021	0.03	-0.059	-0.0061
Prop.Ed.mothers	-0.215	0.495	-1.193	-0.0762
Prop vacc	-0.44	0.77	-1.081	-0.0959
	Estimates of model hyperparameters			
	mean	sd	$0.025 q u a n t$	$0.975 q u a n t$
Precision (iid)	4.25	1.08	2.46	6.68

Model 4: Spatial Possion regression model(BYM)
Estimates of Fixed effects parameters

	mean	sd	$0.025 q u a n t$	$0.975 q u a n t$
Intercept	0.744	0.51	0.261	1.27
Health facility	-0.021	0.03	-0.059	-0.006
Prop.Ed.mothers	-0.122	0.495	-1.198	-0.0755
Prop vacc	-0.429	0.77	-1.091	-0.0949
	Estimates of Model hyperparameters			
	mean	sd	$0.025 q u a n t$	$0.975 q u a n t$
Precision(iid)	4.25	1.08	2.46	6.68
Precision(spatial)	1804.54	1775.42	116.43	6550.54

Summary of DIC Values of fitted models

Model	DIC
Non-spatial+all covariate	2020.26
All covariate +Exchangeble random effects	326.6
All covariate +ICAR random effects	326.68
All covariate +BYM random effects	326.6

(a) Compute the Z-value associated with the Moran's I statistic.
(b) Test whether the distribution of measles cases is random or clustered or dispersed.
(c) Use an appropriate method to selected the best model among the fitted models. Interpret the results of the selected model
2.3 (a) Define mathematically (give full specifications with covariates in matrix forms) the following spatial econometric models: Spatial Lag and Spatial error models.
(b) Briefly compare the models defined in 2.3 (a) (above).

Question 3 [30 marks]

3.1 Show that if $Z(s)$ is a second-order stationary process, then a variogram function $\gamma(h)$ can be deduced from $C(h)$ according to the formula:

$$
\gamma(h)=C(0)-C(h)
$$

3.2 Suppose measurements of a geostatistical process Z on the same borehole are taken from ten points and the results are shown in Table 1. Also suppose that all the data points are equally spaced - two neighbouring data points are separated by the distance of 1 m . Compute $\gamma(h=3)$

Table 1: Data points and their values

s_{i}	1	2	3	4	5	6	7	8	9	10
$Z\left(s_{i}\right)$	41.2	40.2	39.7	39.2	40.1	38.3	39.1	40.0	41.1	40.3

3.3 Let the exponential autocovariance function be defined by

$$
C(h)= \begin{cases}\tau^{2}+\sigma^{2} & \text { if } h=0 \\ \sigma^{2} \exp \left(-\frac{\|h\|}{\phi}\right) & \text { if } h \neq 0\end{cases}
$$

Then derive the exponential variogam.
3.4 Let $\{Z(s): s \in D\}$ be a second-order stationary geostatistical process. Let $Z\left(s_{i}\right)$ refer to the measurement of Z obtained at point location $s_{i}, i=1, \ldots, n$, and $Z\left(s_{0}\right)$ is assigned to the location where the variable is to be estimated. Then, using simple kriging method, the predicted value at s_{0} is

$$
\hat{Z}\left(s_{0}\right)=m+\sum_{i=1}^{n} w_{i}\left(Z\left(s_{i}\right)-m\right),
$$

where $m=E\left(Z\left(s_{i}\right)\right.$.
(a) Show $\hat{Z}\left(s_{0}\right)$ is unbiased Estimator.
(b) Derive its variance and show that is minimal.

Question 4 [25 marks]

4.1 Let Z be a spatial point process in a spatial domain D. Explain what is meant by saying that is Z
(a) a homogeneous Poisson process(HPP).
(b) a completely spatial random.
(c) a regular process
(d) a clustered process
4.2 Assume that Z is a homogeneous Poisson process(HPP) in a spatial domain $D \subset \Re^{2}$. Use the maximum likelihood estimation method to show the constant first order intensity function λ is given by $\lambda=\frac{Z(D)}{|D|}=\frac{n}{|D|}$.
4.3 Consider the following point process of $n=101$ points, split into 9 quadrats containing 3 rows and 3 columns as shown if Figure.1. Use the method of quadrat counts to test whether the data are drawn from a complete spatial random process(show all steps involved in the hypothesis testing process).

Figure 1: Distribution points partioned into 9 quadrats

END OF QUESTION PAPER

The Chi-Square Distribution

P	. 995	. 990	. 975	. 950	. 900	. 750	. 500	. 250	. 100	. 050	. 025	. 010	. 005
1	0.0000	0.0001	0.00098	0.0039	0.0	0.1015	0.	1.3233	2.705	3.84	5.023	6.63490	4
2												9.21034	
3					0.58437		2.36597	8	6.25139	7.81473	9.34840	87	12.83816
4													
5		0.5							9.23636	0	83250	8627	60
6													
7										4	6		20.27774
8								5	7	1	5	20.09024	5
9							8.34283		6	8		9	35
10							9.34182	12.54886	8	4	8	5	18
11													5
12							11.34032		5	7	6	7	28.29952
13							12.33976		3	22.36203	0	27.68825	
14							13.33927	17.11693		9	5	4	35
15													
16											5		19
17												6	
18										0	8	1	45
19									7	30.14353	32.85233	7	38.58226
20												3	
21	8.								9	32.67057	35.47888	93217	06
22									8				65
23	9.						22		0	246	563	0	44.18128
24	9.88								33.19624	36.41503	39.36408	42.97982	45
25	10.51	11	13	14	16	19.93934	24.33	29.33885	34.38159	37.65248	40.64647	44.31410	46.92789
26	11.1602	12.19	13	15	17.29	20	25.336	30.43457	35.56317	38.88514	41.92317	45.64168	48.28988
27	11	12	14.57338	16.15	18	21	26.33634	31.52841	36.74122	40.11327	43.19451	46.96294	49.64492
28	12.46	13.56	15.30	16.92	18	22.65716	27.33623	32.62049	37.91592	41.33714	44.46079	48.27824	50.99338
29	13.12115	14.25645	16.04707	17.7083	19.76	23.56659	28.33613	33.71091	39.08747	42.55697	45.72229	49.58788	52.33562
30	13.78672	14.95346	16.79077	18.49266	20.59923	24.47761	29.33603	34.79974	40.25602	43.77297	46.97924	50.89218	53.67196

